If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6n^2+90n+324=0
a = 6; b = 90; c = +324;
Δ = b2-4ac
Δ = 902-4·6·324
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(90)-18}{2*6}=\frac{-108}{12} =-9 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(90)+18}{2*6}=\frac{-72}{12} =-6 $
| m+4/m^2+3m+2-4/m^2+4m+4=m-4/m^2+3m+2 | | 4x-1=7x+17 | | 1/x-3-4/x+5=8/x2+2x-15 | | 17x+1=5x+8 | | -54=1-5k | | 6(1-p)=-3(p-10) | | 2x-5/4x=13 | | 1/2(14x+2)=57 | | 8y-16=10y-9+7 | | 4/x+5=2/3x+31/6 | | y=(-3)1 | | Y=-4(10x)+260 | | -35-6m=3(7-4m)-8 | | 1-¹/5x=-⁴/5(5+x) | | 4/5+5=2/3x+31/6 | | 4x-9+2x=-3x | | 3x-1(7x-9)=-2x-6 | | x+1/18=2/9+x-5/5 | | n+(n-4)=72 | | 3/4*x=92 | | n+(n+4)=72 | | 8x/3+49/6=-11x-16/3 | | y-5+1=0 | | y+2=(1)/(2)(10y+4) | | 32x-10x+8-2=22x | | 3(x-1)=x+15 | | 58=6t | | -10(5k+8)=8(-5-5k) | | 20-5r=5(5r-2) | | -8(6n-5)=-6-2n | | 2v^2=12v | | 1a^2+1a-240=0 |